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Solving 1D Plasmas and 2D Boundary Problems 
Using Jack Polynomials and Functional Relations 
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The general one-dimensional "log-sine" gas is defined by restricting the positive 
and negative charges of a two-dimensional Coulomb gas to live on a circle. 
Depending on charge constraints, this problem is equivalent to different 
boundary field theories. 

We study the electrically neutral case, which is equivalent to a two- 
dimensional free boson with an impurity cosine potential. We use two different 
methods: a perturbative one based on Jack symmetric functions, and a non- 
perturbative one based on the thermodynamic Bethe ansatz and functional 
relations. The first method allows us to find an explicit series expression for all 
coefficients in the virial expansion of the free energy and the experimentally 
measurable conductance. Some results for correlation functions are also 
presented. The second method gives an expression for the full free energy, which 
yields a surprising fluctuation-dissipation relation between the conductance and 
the free energy. 
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1. INTRODUCTION 

The  genera l  2 D  classical  C o u l o m b  gas wi th  charges  res t r ic ted to live on 
a circle is a recur ren t  p r o b l e m  in several  areas  o f  theore t ica l  physics. 

These  inc lude  r a n d o m  ma t r ix  theory/~1 impur i ty  p r o b l e m s  (like the K o n d o  

effect 12~ and  r e sonan t  t unne l ing  in q u a n t u m  wires t3) and  be tween  q u a n t u m  
Hal l  edge statest4'5~), and  diss ipat ive  q u a n t u m  mechanics ,  t6-~~ In  this I D  

" log-s ine"  gas, Ihe  charges  in terac t  wi th  a l ong - r ange  in te rac t ion  p r o p o r -  
t ional  to the log  o f  the sine o f  the separa t ion .  
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Two particular cases of this Coulomb gas have been solved analyti- 
cally. The gas with only one type of charge (the Dyson gas) is related to 
eigenvalue statistics for circular ensembles tl) and can be addressed by 
elementary methods. When there are two types of charges required to alter- 
nate in space, the gas is related to the Kondo problem t2) and the problem 
can be addressed indirectly by the Bethe ansatz solution of the Kondo 
problem c~1) (some results are also available from a lattice regularization of 
the gas ~ 12~). 

We present in this paper two methods to address the general model 
with two types of charges. The first method is direct, and uses the recently 
developed technical tool of Jack symmetric functions, t~s-16) These have 
been used extensively in recent work on Green functions for the Calogero- 
Sutherland model, t17-22) The second method is indirect and uses the solu- 
tion of the boundary sine-Gordon theory t2s) via exact S matrices and the 
thermodynamic Bethe ansatz (TBA). t24" 25) 

Our results provide two different expressions for the free energy for a 
large range of couplings, both of which can be evaluated numerically. 
Previously, only results at a few special points had been availableJ 26" 27) 

Technically, the combination of the two methods allows us to compute 
a rather large number of quantities, including dynamical properties. When 
they overlap, they can be compared, leading to interesting relations 
between two different active areas of mathematical physics: 1/r 2 models and 
the TBA. Physically, our solution can be applied to a range of interesting 
problems, including the experimentally measurable resonant tunneling 
between quantum Hall edge states (which was derived using the TBA in 
ref. 5) and the case of dissipative quantum mechanics, which will be 
discussed elsewhere. 

We start by describing this model as a (1 + 1 )-dimensional field theory 
with an impurity. Consider a Gaussian model on an infinite cylinder with 
action 

A = - � 8 9  d a d r  [(O~b)2 + (O~b) 2] +2g  dr cosEfl~b(a = O, r ) ]  
- - c x ~  

(1.1) 

With periodic boundary conditions in the v direction, this is equivalent to 
a one-dimensional quantum problem at nonzero temperature I/R, with 
an impurity at cr = O. The impurity coupling g has a dimension, so this 
problem is not conformally invariant and the interaction induces a flow 
from the free boson on an infinite cylinder in the UV (g=O)  to two 
decoupled free bosons on two half-cylinders with Dirichlet boundary 
conditions at their boundary in the IR (g large). A convenient quantity 
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describing this flow is the "g-factor" discussed in ref. 28, whose logarithm 
is equal to the impurity entropy (the contribution to the entropy which is 
independent of the length of the cylinder). This "g-factor" (which we prefer 
to denote co here) is co= 1 in the UV and co= t -t/2 in the IR, where we 
define 

4n 
t = - -  

We can study (1.1) by naive perturbation theory, which exhibits the 
relation with a Coulomb gas. Defining as usual the partition function as 
Z = ~  [d~b] e A, we introduce 

, ,~  Z(g) 
Z(g = 0) 

Using the free field propagator on an infinite cylinder 

($(r)  $ ( r ' ) ) = - l l n  ~ff- sin R ( r -  r') 

(where x is a renormalization constant), we obtain by the standard pertur- 
bation expansion in powers of g 

o~=~ g2,, f: ,,=o (n!) ~ dz,...dr,,dr', ...dr',, 

x I ]  X R s i n n ( r ~  rj)a2/2"ki~< ~_ - -  sin 
i < j 7"~ 1~  " I 

(1.2) 

The sum (1.2) is the grand canonical partition function for a classical two- 
dimensional Coulomb gas with two species of particles (with positive and 
negative charges) that lie on a circle of radius R, and which is electrically 
neutral. The p~rameter g is the fugacity of charges, while fl controls the 
combination l-charge ] 2 x [ inverse temperature ]. This expression requires 
regularization for f12>~ 4n, but is well defined otherwise. In Section 2 we 
will show how these integrals for f12< 47r can be explicitly evaluated by 
expanding the integrands in terms of Jack polynomials. 
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We can also reformulate this as a boundary problem (i.e., on the half- 
cylinder) following ref. 29. We introduce two new fields 

~(a, r ) = ~  [~(a, r)+ r r)] 

Co(a, r)=v~ 2 [r r)-  ~(-~, r)] 

so the action reads now 

.4= _ dadr[(OT~.)2+(a.r 2] 

 cosE  e o:0 ] (1.3) 

One can of course obtain the perturbative expansion (1.2) from (1.3) by 
using the propagator on the half-cylinder. In the UV both fields have 
Neumann boundary conditions and co = (2It) 1/2, while in the IR the odd 
field still has Neumann boundary conditions and the even has Dirichlet 
boundary conditions and co = 1 / ~ .  Notice that in the reformulation the 
absolute values of 09 have changed; this is presumably due to Jacobian 
terms in the functional integral when redefining the new fields. However, 
the ratio coUV/CO,R = ( / ) D / C O N  = l-1/2 remains a constant. 

Using this reformulation, we can obtain the free energy ~ = - T  In .~' 
nonperturbatively using the thermodynamic Bethe ansatz. (24"251 The corre- 
sponding analysis appears in ref. 23 for t integer. We will discuss this in 
Section 4, where we will also derive a set of functional equations which 
satisfies. The results of the TBA depend on a dimensionless variable T/TB, 
where 

g = ir T ~ -  l)/, 

and x'  is an unknown renormalization constant. The nonperturbative free 
energy also contains a nonanalytic term f f  independent of T, which 
detailed analysis gives as 

= TB ( 1.4) 
2 COS[n/2(t-- 1)] 
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There is also a shift because we have ~ - ( g = 0 ) = 0 ,  whereas the TBA is 
defined so that ~TBA(g~ O0) ~ 0. Thus 

~BA = ~---  Tln x/~+ f f  (1.5) 

This allows us to obtain the exact behavior of the free energy at large g 
(large TB), because the power series must be precisely balanced by ~ ,  and 
thus 

1 ( TB ) exp ( 1 ,6 ) 
2 cos [ n/2(t -- 1 ) ] 

in this limit. We will see in Section 2 that this behavior also follows from 
the expansion (1.2). 

This two-dimensional local field theory problem can also be refor- 
mulated as a one-dimensional nonlocal field theory on a circle of circum- 
ference R by integrating out the "bulk" degrees of freedom. Let us consider, 
for instance, the second (boundary) point of view and forget about the odd 
field, which totally decouples. After integration the even action reads 

Aebd~y - r~ fo' fo' ee(r) ee(r') 
2R 2 dr dr' [sin(n/R)(r - v ' ) ]  2 

+ 2g l f  drc~162 ] 

We therefore have a one-dimensional model with a sine-Gordon-type inter- 
action, where the Gaussian part has a I/r 2 interaction. Related models have 
been considered in refs. 30 and 31. 

2. USING JACK POLYNOMIALS IN THE 
C O U L O M B  GAS PROBLEM 

In this section we find a series expression for all the coefficients of the 
perturbative expansion of the partition function. The result (1.2) can be 
easily recast after a change of integration variables into 

where we have set 

~ = ~ x2"Z2,, (2.1) 
n ~ 0  

x = Rg \2re~ 
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and 

z = 1 - 2 -  d . ,  du,, d.', a,,;, 
2 . -  (n!)-' Jo 2re 2re 2n 2re 

1--I,<j 2 s i n ( ( u i -  u/)/2) 1-Ik </2  sin((u~ - u~)/2) 2/, 

x I-Ii.k 2 s i n ( ( u i -  u~,)/2) 

7 t 

[I(  az, e:; (2.2) 
=(n~.)2~ . \2inz, 2ircz;J I-L,k[(1--z,Yk)(l--z'k,5,)l '# 

where A(z) is the n-variable Vandermonde determinant  A(z) = I-Ii<j ( z i -  zj), 
and z ,  = exp(iuk). 

To  evaluate this integral, we expand the integrand in terms of Jack 
polynomials  ~ ~5, ~3, ~4) 

1 
i~j ( ~ ba(a) P x(r, a) P a(s, a) (2.3) 
. 1 - risj) a 2 

The function Pa(r, a) is a symmetric  polynomial  in the set of variables 
( q ,  r 2 ..... r,,) which depends on a rational number  a. The subscript 2 is a 
parti t ion of an integer; this is conveniently labeled by a Young tableau; 
e.g., the parti t ion 5 = 2 + 2 + 1 is labeled by the tableau with two boxes in 
the first row, two boxes in the second, and one in the third. The polyno-  
mials Pa(x, a) vanish if the number  of parts I(2) of  the parti t ion 2 {i.e., the 
number  of  rows of  the tableau) is greater  than the number  n of  variables, 
so the sum runs over all parti t ions of  all integers with 1(2)~< n. The Jack 
polynomials  have the useful proper ty  that their or thogonal i ty  relation 
involves the Vandermonde  determinant:  

d z  i f 
| |  ~ [d (z )  d(z)  ]"  P,~(z, a) P,,(~, a) = ~,~.,,N;~(a) (2.4) 

Hence the value of the integral follows (here a = l/t): 

1 
Z 2 , - ( n ! )  2 ~. b~N~ (2.5) 

;t  
gal~<n 

The numerical coefficients in the foregoing expression are expressed as a 
product  over the boxes of the Young tableau associated with the parti t ion 
2. ~s'~3"m We have 

2 ~ f J -  1 + ( 1 / t ) ( n - i +  1)'~ 2 
b i N 2 =  ~.~a ~ j + ( 1 / t ) ( n - - i )  c,, 11 . . . . . . . .  j (2.6) 
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where 
F(1 +n/t) 

c , , -  [I"(1 + l / t ) ]"  

and s = (i, j)  is the box of the tableau at the intersection of the j th  column 
and ith line. 

One can write this product compactly using gamma functions. Two 
convenient expressions of Z2, , follow, depending on whether one uses parti- 
tions or their conjugates (given by interchanging the rows and columns of 
the Young tableau). One obtains 

Z [c.~2 ax) [F( (1 / t ) (n_ i )+l )F( (1 / t ) (n+l_ i )+2i ) ]2  
z,, = t ~ ! )  ~. IF[ k F ( ( 1 / t ) ( n - - i + l ) ) l ' ( ( I / t ) ( n - i ) + l - ~ ) J  (2.7) 

,~ i = l  
/ (2)  ~<n 

and alternatively, using the conjugates, 

g2n \n!J E F ( n + l + t ( i - 1 ) )  2 

1(2) ~< n 

( F(n-- )t' + ti) ) z (2.8) 
x F ( n - 2 ~ + l + t ( i - 1 ) )  

where 2;+ 1 ~< 2;. 
Consider, for instance, the case n = 1: (2.7) reads then 

Z2(t)= ~, f/ F(llt+2,))2 (2.9) 
a, =o \F(1/t) F(I + 21)J 

The sum converges only for t > 2, where the UV dimension of the per- 
turbing operator is x=f12/47r< 1/2.132) This coincides with the domain 
where the integrals in (1.2) are UV convergent. (We have no problem with 
IR divergences because we are on a circle.) The sum in (2.9) can be done 
explicitly; one can also obtain its value by a direct treatment of the 
integral, avoiding Jack functions. The result is 

Z" . F(l--21t) 
2(t) = F-~ 1- S ~-)  (2.10) 

Let us now study the large-n behavior of the series (1.2). Using the 
expression with conjugate partitions (2.8), we find 

Z2,=r xl / ((n-2:+ti--1)(n-2:+ti-2)...~ ~2 
\-~,j E ~__lt \ ( n - 2 1 + t i - t + l )  J ) 

: \ (;-~ ~ i )--~ u 77 --7~::: ~ ~--7i -2-7 7 7) / 1(2) ~<n 
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Since conjugate parti t ions are limited by the number  n, we can approx-  
imate the sum in (2.8) for large n as an integral over  the variables 2~/n- vv 
Calling the number  of  boxes in the first line 2~ - p, we get 

Z2" ~- \n!J dr1 dr2.., dvp 
p = 0  

P (  1)i ~ 2t-2 
x 1-[ 1 - ( 1  +ti/N)J 

i = l  

The integrand is minimized by ( 1 - v i )  2'-2 and maximized by 1. In both  
cases one can symmetrize over the vi to compute  the integral explicitly and 
one finds 

e,/,2t-,,(c,,'~2<Z2,,<e,,(e,'~ 2 
\n! J \n!./ 

Therefore, the large-n behavior  of  the Z2,, is fully controlled by the (chin !)2 
prefactor and 

Z2n ~ exp I 2n ( ~ -  l ) log n + O(n) ] (2.11) 

This result was previously derived in ref. 33. An impor tant  conclusion is 
that  for t > 2  the radius of  convergence of (2.1) is infinite. Moreover ,  
approximat ing the sum over n by an integral, we find 

.~ ~ exp(const �9 x tltt- 1)) (2.12) 

which is in agreement with (1.6). This behavior  is well expected on physical 
grounds. Indeed the parti t ion function reads also ~ = exp(oP/T - 5e), where 
T= I/R is the temperature  of the equivalent one-dimensional  quan tum 
system, and o ~ and 5 ~ are the impurity energy and entropy,  respectively. In 
the deep IR the impurity entropy converges to s ~ In co and the energy, on 
dimensional grounds,  scales as g ' /"-11. The behavior  (2.12) is the analog of 
the "bulk term" in flows between bulk critical points. 

Although expression (2.7) or (2.8) is in effect a solution of the problem, 
one can wonder  about  its practical use. Trying to evaluate the Z2,, 
numerically, one finds that  the series converges very slowly. For  example,  
for t = 3, evaluating a billion terms gives an accuracy of only about  0.1%. 
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Fortunately, results are greatly improved by studying the free energy 
= - -T in  .~e, whose expansion we write 

,~=T L f2,, x2" (2.13) 
n ~0 

The f2,, are of course given in terms of the Z2, ,. For example, f2 = - Z 2  and 
f4-- -Z4 + Z2/2. When evaluating the f2,, numerically for n > 1, we find a 
much faster convergence. For t = 3, we have 

A =  -F(1/3)/F2(2/3), 

f4=0.229454064, 

f6 = -0.092261103, 

f s =  0.44223558 

flo = --0.022852208 

f~z=O.O12329254 

The Z2n c a n  be extracted from these data, and are 

Z2 = F(1/3)/F2(2/3), 

Z4=0.8378042270, 

Z6 = 0.276783312, 

Zs = 0.0618476490 

Zio = 0.01021005440 

ZI2 = 0.00131673987 

(2.14) 

(2.15) 

These coefficients are enough to get a good approximation of the proper- 
ties all the way to the infrared (very large x) using Pad6 approximants. It 
is then preferable to consider the entropy 6 a =O,~/OT, which is bounded 
for x large. Keeping the coefficients through f~2, one finds, for instance, 
that ~ ( x  = 0 ) -  6a(x = ~ ) ~  0.57, in good agreement with the exact value 
In ~ ~ 0.549306 .... 

3. O T H E R  Q U A N T I T I E S  OF I N T E R E S T  

The previous calculation of the partition function is the simplest 
calculation which can be done using Jack symmetric functions. In this 
section we present several other calculations, and present a conjecture for 
the experimentally measurable conductance. 

3.1. T w i s t e d  Par t i t ion  Funct ions 

We have so far considered a periodic field ~ on the cylinder. We could 
also have winding modes such that 

2n 
~(a, r + R ) =  ~(~r, r ) + ~ p  (3.1) 

P 
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where p is an integer. By splitting the field into classical and quantum parts 
we obtain an action similar to (1.1), but the interaction term is now 

2g f :  dr cos [ flck(cr =O, r) + 2~z P~] 

Defining as before ~(p)-Z(g,p)/Z(g=O,p),  we find a perturbative 
expansion similar to (1.2) with, however, each term in the sum multiplied 
by 

exp [ i 2 n P ( r l  + . - - + % , - r ' ,  . . . .  z,,)J 

After change of variables we have the same expansion as (2.1), but with 

[A(z)~(z)] 1/' [A(z ')3(z ' )]  '/' ( ~  .-z,'~ t' (3.2) 
x 1.]i.k[(l_z,~)(l_z,k,~3]l/, \Z'I...Z;,/ 

SO in the Coulomb-gas language there is now a magnetic charge located at 
the center of the circle. (We assume p is positive, otherwise just replace p 
by IPl.) We now use the fact that 

( Z I  " ' "  Zn) p Pa(z, a) = P).+p(2, a) (3.3) 

where 2 + p means the partition 2 where p columns of length n have been 
added. Therefore 

1 
Z 2 , , ( p ) = ( n l )  2 ~_, b, tb,~+pN 2 (3.4) 

A 
1(2) ~<n 

where we use the relation N~=Na+p that follows immediately from the 
integral (2.4) defining the norm N. The coefficients b~ read 

2 ; - j +  (1/t)(2~ -- i,+ 1) 

For instance, one has 

= ~ F(1/t+A~)F(1/t_+~+oO 
Z2(~) ~ o / . 2 ( l / t )  F(1 + 21) F(1 + At + or) 

sin(zc/t) F (  1 - 2It) 
(3.5) 

- s i n  n(1/t + ct) F(1 - 1/t +~)  F(I - I/t-m) 
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for ~ an arbi trary real number.  When �9 = p  is an integer, 

( - 1) p F(1 - 2It) 
Z2(p) = (3.6) 

F ( 1 -  l/t  + p) F ( 1 -  1~t -p)  

We can also compute  the part i t ion function when electrical neutrality 
is broken by some amount  Q (assumed integer). Defining 

,.~e = l i m a  O#'p'" ~ [d~]  eiQ~W'~ A 
. - o o  Z ( g = O )  

we have 

Y'~= ~ x'-"+QZ (3.7) 
" n,n + Q 

tt ~ 0  

where Z,,.,,+ a has formally the same expression as (2.2), but there are n 
variables z and n + Q variables z'. By the same manipulat ions we obtain 

1 
Z,.,+Q n! (n+Q)!  ~ 

2 
/ (2)  ~< n 

bx(n) bx(n + Q) Na(n) N~(n + Q) (3.8) 

Observe that  for n = 0 we recover the well-known expression cl) 

Zo.Q = bo(Q) No(Q) = cQ 

3.2. Correlation Functions and the Conductance 

The tool of Jack polynomials  should allow the perturbat ive evaluation 
of correlation functions. However ,  the calculation requires the knowledge 
of branching coefficients which are not known yet in general. We will 
illustrate this with an example. Consider the two-point  function of the field 
~b itself. By the same perturbat ive approach  we find 

1 I o~ x 2. oo ( fz , )p+(zy)p 
( ~ b ( r ) # ( t ' ) > g = ( ~ ( r ) ~ ( t ' ) ) 0 + ~ - ~  Y" ~ Y' - ff,,p (3.9) 

n = l  " p = l  P- 

where 

co. = ~ h ( d z, .z; ~ I ~(z~ ~_(z)),,__:, (~ (_:_, ! ~ (z,)_____~ .A 
i=, \2i~zzi 2i~z;J 1-[;.k[ ( 1 -- z ;~ ) (  1 -- G-~;)] '/ '  

x R,,(Z~, z;) R : ( G  5,) 

G(x , ,  y;) - y (x f  - y f )  
i 



810 Fendley et  al.  

The calculation can be easily done for the first term n = 1 using (3.3). One 
finds 

~g,p = 2[Z2(p) -- Z2(0)] (3.10) 

For general n, we can still decompose the Coulomb-interaction term 
between positive and negative charges using Jack polynomials as in (2.3). 
However, we cannot use the relation (2.4) since we have the extra factors 
Rp. We can decompose ~16"22) 

~ z ~ =  p 3" I-I,,;j)#(L,, [(j___~_I)/__~a-__((!--l)] Pa(z, a) (3.11) 
�9 alal~=p ] - I , . . i ) [ 2 j - - i + ( 2 i - - j + l ) / a ]  

where 121 = Z , ) , i  (the total number of boxes in the tableau). As before, 
a =f12/4z~ = 1/t and the only tableaux which contribute are the ones of the 
form 21/>2_,... >/2,,. The Jack polynomials in (3.11) multiply the ones in 
(2.3). We therefore end up with the problem of determining the coupling 
coefficients 

P aP~, = ~ g~t,P,, 
v 

Unfortunately these coefficients are not yet known in general. 
The two-point function of the field 4) is especially useful in physical 

applications: in the 2D boundary problem the Kubo formula relates it to 
the conductance, t3) while in dissipative quantum mechanics it is the 
mobility. (8'9) The conductance at the Matsubara frequency cop= ( 2n /R )p  
follows from 

_2conf. G , -  t Jo dr' (~b(r) ~(z '))  e 12i=/R)pI~-~'~ (3.12) 

The g2 term is easily picked up using (3.10). The dc conductance then is 
obtained by analytically continuing (3.10) to p = 0, leading to 

x 2 Z , (n )  - Z,(O) + 
G = l + 2  Lim - - O ( X  4 )  

t fl- ,, - o n 

Using (3.5), it is easy to perform the limit and one finds finally 

G 1 x 2 Y(1/ t)  F(I/2) 
= - - - - ~  2 '  _2# + O(x41 

t t-" F( 1/2 + 1/t) 

in agreement with the integral done without the Jack functions. TM 

(3.13) 
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We cannot for the moment compute the two-point function to all 
orders. However, we have the following conjecture for G to all orders: 

l x d-' I 
G = t + ~  ~ In Z(g, et) 1==o (3.14) 

so the first few terms read then 

1 2 
G = - + -- [ Z" x 2 + 2(Z4 - Z2 Z'_,) x 4 

t t 2 - 

"JF 3(Zl6 - -  Z 2 Z  4 - -  Z 4 Z  ~ + Zt l  Z ~ )  x 6 -If- . . ,  ] 

We define the continuation of Z2,,(p) to real values o fp  by simple substitu- 
tion in (3.4), so 

d Z2,,(0t) = = o  

b~N~ - ( n - i +  1) 
i , = t  t 

I(A) ~<n 

where ~(z)=F(z)'/F(z). We can investigate these numbers numerically. 
For t = 3, (3.15) gives Z,'_= -2.64996, Z4'= -2.351, and Z6=' -0.964. The 
first agrees with {3.13), and the others are in very good agreement with the 
conductance calculated using the TBA in the next section. The conjecture 
(3.14) appears to be a reasonable form of the Kubo formula, ~3~ but we have 
not succeeded in deriving it rigorously. 

To close this section, we remark that, although the theory of Jack 
symmetric functions generally deals with rational values of t, we expect all 
formulas obtained above to hold for any t > 2 by naive substitution. 

4. N O N P E R T U R B A T I V E  T R E A T M E N T  

The boundary problem (1.3) is integrable, t34~ One can thus find the 
exact S matrix f'or the quasipartides of the problem t34~ and then use the 
thermodynamic Bethe ansatz t24'-'5~ to compute the free energy t'-3~ and 
the conductance/5~ In this section, we describe these results and use them 
to derive a variety of functional equations. These functional relations give 
nonperturbative equations for the free energy and allow one to derive 
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simple but nontrivial relations among the coefficients Z2,,. Another func- 
tional relation relates the conductance to the free energy, thus giving a new 
fluctuation-dissipation theorem for this system. We also find expansion 
coefficients at t = 3 numerically from the TBA as another check on our 
results. 

The starting point of the TBA is the quasiparticle description of a two- 
dimensional integrable field theory. These quasiparticles scatter among 
themselves and off of the impurity with a known S matrix. At any value 
of t, the quasiparticle spectrum includes the soliton and antisoliton, which 
we label by + and - ,  respectively. Moreover, at coupling t, there are t - 2  
"breather" states in the spectrum. The energy and momentum of these 
left-moving massless particles are parametrized by rapidity variable 0, so 
E =  - P  = # r  e x p ( - 0 ) ,  where # + =/~_ = #  and # j =  2# s in[n/2( t -  1 )] for 
the breathers. We define the density of states nr and the density of filled 
states Pr for each quasiparticle species r. Periodic boundary conditions give 
the n r as a functional of the Pr. The free energy can be written in terms of 
these quantities; demanding it be at a minimum gives another set of rela- 
tions which determine the densities. These relations are most conveniently 
written in terms of the functions e,.(0), which are defined by 

1 _p, .  

1 +e~'--nr 

Notice that if the particles are free, Print is the Fermi distribution function. 
However, for t # 2, the particles are not free, and the e~ are determined by 
the TBA equation 

er(0)= e - ~  dO' ~o~.,.(0-0') In(1 + e  .... (o')) (4.1) 

where the label s runs over breathers (1 . . .  t - 2 )  and _+. The functions ~or~. 
for integer t are given in refs. 35 and 23. We will not need them, because 
here these equations can be written in a much simpler form~36): 

f~ '  ( , - - 1 )  ~ N r ,  l n ( l + e  ~.''~ (4.2) e,.= -o~ dO' 2 n c o s h [ ( t -  1 ) ( 0 - 0 ' ) ]  

where N,.s is the incidence matrix of the following diagram: 

O C" " O - - - - -  - -  ------O 
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The dependences on the rat ios/~/~ seem to have disappeared from (4.2), 
but they appear as an asymptotic condition: the original equations (4.1) 
indicate that the solution must satisfy 

'Ur e -o 0 --* (4.3) '~r ~ - -  a s  - -  0(3 
kt 

4 . 1 .  T h e  P a r t i t i o n  F u n c t i o n  

The impurity free energy is given in terms of e+: 

TB f dO t -  1 ln( 1 + e ~§ (4.4) 
~TBA--2COS[ZC/2(t-- 1)] T ~ c o s h [ ( t - - - i ) ( 0 - ~ ) ]  

where c~--ln(T/TB). 3 The first piece is the nonanalytic term (1.4). Since the 
same kernel appears in (4.4) and (4.2), ~ and ~ can be written in a 
simpler form for many of the t. Using the relation (1.5) between 
and O~TB A, we have, for example, 

'~(~z) = [ Y,(~)/3] ,/2, t = 3 

~(~)  = 2![ Y2(0t)] ,/3, t =  4 (4.5) 

.~(oQ= [ Y3(ot)/5 Y,(a) ] '/2, t = 5  

where we define Yr = exp(e,). 
We derive simple functional relations for ~(ct) by continuing it and 

the Y,(0t) into the complex ~z plane. (36) Using the simple identity 

l i m [  2 +cosh(202__izc/2+x)]=2rr,(O) (4.6) _,-~o cosh(20+irc/2-x) 

we have 

1 
.~(~ + y ) L r ( c t - y ) =  t [1 + Y+(ct)] (4.7) 

where ), -= irr/2(t - I ). Similarly, Eq. (4.2)  yields 

Y+(0+y)  Y + ( O - y ) =  1 + I",_2(0) 

Y,_2(O+y) Y,_2(O-y)=[I+Y,_3(O)][I+Y+(8)] 2 (4.8) 

Y~(O+y) Y~(0- y) = [1 + Yo+,(O)][ 1 + Y~_,(O)] 

3 This can be derived from the kernels x ,  of ref. 23 by using (4.2) a long  with the identi ty 

2 c o s h y f f , = ~ b  Nob~b for a =  1 . . . t - - 2  and  2 coshy(K+ + x _ ) = 2 t ~ , _ 2 +  1. 
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where a =  1 ... t - 3 ,  we define Y0--0, and it follows from symmetry 
that Y+ = Y_. These equations are applicable everywhere in the 
complex 0 plane, whereas the original TBA equations apply only in a 
strip IIm 01 < n / ( t -  1). The functional relations determine the functions 
u and ~ once the asymptotic condition (4.3) is imposed. One can 
argue c36~ that the functions Yr(cc) [and ~(ct)]  have the periodicity 
Y,.(a + ty)= Y,(~), which implies that they can be expanded in powers of 
(TB/T) -ZCt- l ) / ,  for T B / T  small. This then gives the expansions (2.1) and 
(2.13 ), because x oc (TB/T)  ~' - n ,/, 

Plugging the perturbative expansions into the functional relations (4.7) 
and (4.8) gives nontrivial relations among the coefficients determined in 
Section 2 by the Jack-polynomial expansions. For t = 3, 4 these constraints 
can be written in a simple form by using (4.5). Doing a little algebra, we 
have 

3~(ct + irt/2 ) ~ ( ~  -- i~/2 ) ~(oc) 

= .s + i~/2) + ~r(~) + o,Z(~ -- ir~/2), t = 3 
(4.9) 

4~(~  + ir~/3 ) ~ ( ~ -  i~/3 ) ~ ( ~ )  

= ~ ( o ~ + # r / 3 ) + 2 ~ r ~ - ( ~ t ) + ~ ( ~ - - i ~ z / 3 ) ,  t = 4  

These relations have the nice feature that they have lost all trace of the 
quasiparticle index r. This is a strong hint that they can be derived directly, 
without having to do the full TBA analysis. One can also hope that there 
is a simple relation even for noninteger t (where the TBA analysis can get 
quite complicated); we make a conjecture in the next subsection. Even 
though (4.9) are stronger relations than (4.7) and (4.8), this still probably 
is not the end of the story: the conjecture for t = 4  amounts to 2~(ct) 
~e(ct + 2ir~/3) = f ( ~  + i~z/3) + ~ ( ~ -  #z/3), which yields (4.9), but not the 
other way around. 

Plugging (2.1) into (4.9), one finds 

e x p ( - - 3  ,~f6,,x 6") V Z  ~c 6,, =/_., 6,- , t = 3  
n 

This means, for example, that for t = 3 ,  2Z6= - 6 f 6 = 3 Z 2 Z 4 - - ( Z 2 )  3 and 
Z~_, = -3 . / ' , 2+  9(f6)2/2. Both agree with the Jack-polynomial expressions 
numerically evaluated in (2.14) and (2.15). In general, it means that for 
t =  3, the coefficients Z6,, are given in terms of the lower coefficients. 
Similarly, for t = 4 one finds that the coefficients Z4,, are determined in 
terms of lower coefficients. For example, Z4 = (Z2)2/3 = • / [3F4(3 /4 ) ]  and 
9Z8= 1 8 Z 2 Z 6 - Z ~ .  It would certainly be interesting to have a direct 
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proof [i.e., one depending only on the expression (2.7) or (2.8)] of these 
relations. They are certainly a hint of a much deeper structure to the 
problem. 

Since we cannot determine all of the coefficients from the functional 
relations, a final check is to solve the TBA equations numerically and then 
fit the results to a power series. Doing a perturbative expansion of the 
nonperturbative solution, one obtains 

~-TBA : T k2n + ~ (4.10) 
11=0 

We can now match these results with those of the Jack-polynomial 
expansion, once comparison of the first order has determined the ratio of 
the unknown constants x, x'. We expect 

k2,, (k2 V' 
f2,-~, = \ f z . )  (4.11) 

We evaluate the full function ~ ( T )  to double-precision accuracy by 
solving the integral equation (4.1), plugging this into the free energy 
(4.4), and then fitting this to the series (4.11) at large T. For t = 3 ,  we find 

k2 = -0.4567084, ks = 0.000422 

k4 = 0.0224220, klo = -0.00007 (4.12) 

k 6 = -0 .002818 ,  

To the accuracy of the TBA fit, we have excellent agreement. The scales x 
and TB are therefore related for t = 3 by 

-/-'2(2/3 ) ( ~ )  4/3 
x 2 = Ik=l ~,--~rz~z-,,, ( 4 . 1 3 )  

l t l l J )  

4.2. The Conductance 

In this subsection we use the nonperturbative TBA to derive a 
remarkable fluctuation-dissipation relation of the conductance to the 
partition function. This allows us to obtain the value of infinitely many 
coefficients in the perturbation expansion of G. It also allows us to conjec- 
ture a functional relation for ~ for any rational value of t. 

The TBA gives the conductance as c5) 

f~ '  t - -1  1 
G(oQ = o~. dO 2 coshZ[ ( t_  1 ) (0 -cQ]  1 + Y+(O) (4.14) 

822/79/5-6-2 



816 Fendley e t  al. 

where 0c= ln(T/TB) as before, and Y+ is given by the TBA equation (4.2). 
By using the relation 

22 22 ] 
lim = -i2zrcY(0) 
x ~ o cosh2(J.0 -]- izc/2 - x) cosh2()~0 ~ ire~2 + x) 

one finds 

n o 1 
G(a + y ) - -  G ( c t -  ?) = - i -  

t -  1 0oc 1 + Y+(ct) 

where ) , -  i n / [2 ( t - I ) ] .  Using the relation (4.7), this gives 

rc a 
G(a + y) - G(~ - y) = - i  , - - - - - 7  [~e -~(ct + y) ~ -  ~(~ - y)] 

t( t 0~ ) 1 -  
(4.15) 

This fluctuation-dissipation relation has lost all trace of the quasiparticles 
of  the TBA: it is thus tempting to conjecture that  it holds for a11 t, not just 
the integer values where the TBA analysis is valid. 

The perturbat ive expansion is Gp~rt=Z,,  g2nx 2n, SO we have, for 
example, 

2~ 
g2 = --Z2 ~ cot t 

in agreement with the perturbat ive calculations (2.10) and (3.13), which are 
valid for any t > 2. When t - p / q  is rational, the fluctuation-dissipation 
relation (4.15) gives many  but not all of  the g2,, in terms of the Z2,, (with 
m ~< n), because the terms on the left-hand side vanish when n is a multiple 
of p. For  the physically impor tant  value t = 3, this gives all coefficients 
g6n+2 and g6n+4; for example, 

2~ 4n 8~ 
g2 = - - - ' - ~  Z2 '  9 g 4 -  9 x//3 Z4 '  g8=-9--~ (ZS-Z2Z6) 

These are in excellent agreement  with a numerical calculation of the TBA 
conductance. 

Although the fact that  some of the terms on the left-hand side of  (4.15) 
vanish for rational t means we do not know how to relate these gz, to the 
Z2,,  it does seem to imply a constraint  on Z. We know that  Z is an 
analytic function of x for t > 2, but we do not know that G is as well. [ One 
way of checking this would be to check that  the explicit per turbat ive 
expansions (3.15) and (2.7) for G and ~ obey the formula (4.15).] If  G is 
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indeed analytic (so G = Gp~r,), then it requires that these terms on the right- 
hand side also vanish, which means that ~ should satisfy 

p 

~-~(o~ + 2jT) ~-~(oL + 2 ( j - 1 )  ),)= p (4.16) 
j = ]  

For t = 3  this is the relation already derived in (4.9), but for t - - 4  it is 
different. Putting it together with (4.9) for t = 4 ,  we find the simpler rela- 
tion 2~(~)  .~(ct + 2in/3) = ~(o~ + in~3) + ~(o~ - in~3). This relation alone 
implies both (4.16) and (4.9) for t =4.  We can check the relationship (4.16) 
numerically. Plugging the expansion of ~ into (4.16) gives the coefficients 
Z2p in terms of lower ones, which can be compared with the expression 
(2.7). We have checked Z~o for t = 5 and t - -5/2 ,  and find that it is indeed 
satisfied. This leads us to conjecture that (4.16) is true for all t > 2 and 
rational. We also note that the relations (4.7) and (4.8) require that ~e 
should obey an even more restrictive functional relationship. We have not 
succeeded in finding its general form, but one can always plug the pertur- 
bative expansions into (4.7) and (4.8) to derive more relations among the 
coefficients. 

To conclude this section, we recall first that the TBA analysis is 
usually made for t rational only. Moreover, some of the results given above 
hold for t integer only. However, some of the functional relations we have 
uncovered seem to make sense for any t. Observe also that the Jack expan- 
sion and TBA behave differently as t--+ 2. In the former case all integrals 
just blow up, while in the latter case one gets finite results for the free 
energy, involving, however, logarithmic terms. Presumably, the TBA gives 
a regularized version of the Jack computations. It remains to be seen if this 
is equivalent to the lattice regularization at t -- 2 in ref. 27. 

5. CONCLUSION 

Using Jack polynomials and the thermodynamic Bethe ansatz, many 
properties of the 1D log-sine gas can be computed exactly, some of which 
are of experimental significance. We hope that these methods can be used 
for other problems with potential applications, in particular, for dissipative 
quantum mechanics. Moreover, multiple integrals similar to those we do 
using the Jack symmetric functions appear in many different kinds of com- 
putations, so we hope that these techniques are generally applicable. 

On the more formal side, it is exciting to have an example where two 
different areas of mathematical physics meet. By analogy, one might hope 
that these TBA techniques can be applied to other 1/r a models, such as 
the Calogero-Sutherland model, where Jack polynomials have been used 
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recently. This overlap of techniques has led to intriguing relations between 
various quantities of Jack symmetric function theory. For example, when 
t = 4  the series (2.7) can be summed to give Z4=rt/[31"4(3/4)], but we 
have no direct proof, so we do not know if this is a fluke or if a closed-form 
expression can be found for all t. The overlap has also led to several simple 
but powerful conjectures like (4.16) and (3.14). One can hope that this is 
evidence of a more complete mathematical structure behind the scene. 
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